
AD-A 3A PATTERNANALYSIS AND RECOGNITION CORP ROME NY F/G 9/2
DATA ENTRY FOR C2 PROBLEMS.(U)
Aid 81 T V EDWARDS, D D FERRIS, K L RESTER F30602-80-C-0077

UNCLASSIFIED PAR-81-15 RADC-TR-81-119 N.

I~II ff III.lEhEEIhEEEEIhEE
EIIE.Eiiiiiiiiflflfflflfflflfflflf END

L • •

IRADC-TIR-8 I - 19/L1#
Final Technical Report
June 1981

DATA ENTRY FOR C 2PROBLEMS
Pattern Analysis & Recognition Corporation

..- DTI-C
Thomas V. Edwards ; *LK CT

David D. Ferris
Kathy L. Nester AUG 0 3 1981

Robed E. Bozek
-E

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This effort was funded totally by the Laboratory Directors' Fund.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

81 8 03 062

1I

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-119 has been reviewed and is approved for publication.

APPROVED:

MICHAEL HEFFRON
Project Engineer

a APPROVED:

JOHN N. ENTZMINGER
Technical Director
Intelligence and Reconnaissance Division

FOR THE COMMANDE~uiz. P L .

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(IRAA) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy,

* -~.-~--.. '

UNCLASSIFIED
SECLIRITY = CATION OF THIS PAGE (Whom Del EnI.red),

EPOR DOCMENTTIONPAGEREAD INSTRUCTIONS
EPR DCMNTTONPG BEFORE COMPLETING FORM

IREPORT NJW0f-_ 2. GOVT ACCESSION NO. 3. VECIPIENT'SCAA OG NUMBSER

DATAENT 2' Final Technica1Aep'(j,

/'Thomas V ./Edwards Kathy L. /ester

David D./Ferris Robert E. Bozek ' I F3.0602-80-C-0077

9 PERFORMING ORGANIZATION NAME AND ADDRESS t0. PROGRAM ELEMENT. PROJECT. TASIK
Pa ttern Analysis and Recognition Corporation AREA &WORK UNI

228 Liberty Plaza Ifl- 61101F
Rome NY 13440 t -e~ 1LD@307Cl

I I. CONTROLLING OFFICE NAME AND ADDRESS ta12 AXPORT. A&T Efi Jung 19 811 GE

Rome Air Development Center (IRAA) 51M
riffiss AFB NY 13441 ______________

I.MONITORING AGENCY NAME A AODRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

- -. UNCLASSIFIED
Same IS.. DECLASSIFICATIONDOWN4GRADINGC

16. DISTRbSUTION STATEMENT (of thir Report)N/

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it different fromt Report)

Same

10. SUPPLEMENTARY NOTES

RADC Project Engineer: Michael Heffron (IRAA)

This effort was funded totally by the Laboratory Directors' Fund.

19. KEY WORDS (Continue on reverse side it necessay and Identify by block number)

Voice Data Entry

20. ABSTRACT (Continue on reveree side li neceecaty and Identify by block nuteber)

-The objective of this effort was to investigate techniques integrating
Voice Data Entry using Automatic Speech Recognition equipment and other
Automatic Data Entry equipment, such as keyboards and dynamic character
pens, etc. The research program focused on methods of combining those
Automatic Data Entry Aids to provide high data throughput, low system
error rates, and in particular, natural and efficient man-machine

DO 1473., SOITION OFIINOV 65IS OSSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE (Whien Dae. Entered)

TABLE OF CONTENTS

Section Page

1. Introduction 1-1

2. The Create Utility 2-1

2.1 The System Definition File 2-1

2.2 Command Line Format. 2-5

2.3 Optional Listing 2-6

3. Train Utility. 3-1

3.1 Train Utility File Structure 3-1

43.2 Train Utility Command Language 3-6

4. User Interface with IDE System 4-1

4.1 User Calling Program 4-1

4.2 Operational Features of the IDE Task 4-5

* IATIs CRAa,
DTIC TAB

"nannOunced
JStificatio

Distributio/
* AvalabilitV Cde

lt Avail n/r
Dit Special

LIST OF FIGURES

Figure P age

2-1 Example of a Three Input Device System Definition File and
the Specified Include Files 2-2

2-2 Representative Output Listing Produced by the CREATE
Utility for a Three Input Device System Definition File . . 2-6

3-1 An ASR Library File Structure 3-3

3-2 Master File Index (MFI) File Structure 3-4

3-3 Library Index File Structure 3-5

3-4 Message Index File Structure 3-5

3-5 System Definition File Source 3-9

ii

1. INTRODUCTION

Under contract F30602-80-C-0077 entitled "Data Entry for C2 Problems",

PAR Technology Corporation designed, developed and installed an Integrated

Data Entry (IDE) System on the RADC SIGINT Support Facility PDP 11/70

computer. Data entry devices currently include an Automatic Speech

Recognition (ASR) device, a Drawn Character Recognition (DCR) device and any

terminal on the PDP 11/70. The system is also expandable to allow future

incorporation of devices such as graphics tablets and new terminals as they

become available. The use of more than one data entry device in a data entry

task will provide higher data throughput rates than is possible with a single

device. This effort consisted of interfacing an ASR to the PDP 11/70 and the

development of software to provide data entry device inputs to a user

4 generated program. The system will be used in future RADC in-house data entry

experiments.

The ASR is a VIP-1O0 speaker-dependent isolated word recognition system

manufactured by Threshold Technology Inc. It consists of a speech

preprocessor which extracts phoneme and spectral based measurements for a

spoken utterance and a NOVA 1200 minicomputer which time normalizes the input

feature data and correlates the input feature array (FAR) with a reference

array (RAR) to determine the word spoken. Libraries are typically 64 to 100

words in size. One of the applications of the IDE system is to enable the

switching between stored speech libraries in a timely fashion. To achieve

this objective, it was necessary that the speech correlation algorithm be

moved to the PDP 11/70. The NOVA was interfaced via an RS232 serial 9600 baud

link to the PDP 11/70. When FAR data is available, it is transferred across

the line to the PDP 11/70 who then performs the correlation. This has

resulted in extremely fast library selection and word recognition rates.

Details on the hardware interfacing can be found in the "Interim Technical

Report."

!I 1-i

..

Software development resulted in the following modules:

* CREATE UTILITY

* TRAIN UTILITY

* IDE SUBROUTINES

The Create utility is used to define a particular data entry device

configuration and the hierarchy of individual devices. It is also used to
attach meaning to a set of specific device inputs. This program reads an

ASCII source file containing the above information and creates a machine

readable system definition file (SDF).

The Train utility is used to facilitate training of the ASR device.

Typically, each word to be recognized is spoken 10 times. Train then averages

the 10 resulting feature pattern and inserts it into one entry of a library

file. Linkage between the SDF, the speech library, the data entry devices and

the user program is made extremely simple by the existence of two IDE

subroutines. The user need only link his program with these subroutines in

order to run the IDE system. One subroutine is called to initialize the

system, while another is used to retrieve inputs from the various entry

devices and their associated definition from the SDF file.

Acceptance tests were run at RADC to verify operation of the IDE and the

speech correlation algorithm in the PDP 11/70. Time between input of speech

utterance and recognized word output on the echo device was demonstrated to be

less than .5 seconds. The speech classification algorithm was tested with 5

speakers, speaking 50, 3-digit connected sequences. Results were that for all

five speakers, 97% of the digits were correct. It was found that one speaker

experienced much higher error rates than the other five. The reason for the

increased errors is thought to be due to the fact that this particular speaker

had not had much previous experience with the ASR device whereas the other

1-2

- *.

four speakers had used the device on several occasions and thus were very

familiar with the manner in which words must be spoken. Disregarding this

speaker, the remaining four speakers exhibited a better than 99% correct

classification.

In the following sections, we will discuss the Create, Train and IDE

tools from a user's point of view. Explicit examples are given whenever

possible. It should be noted that although a number of files of complex

design are used in the system, the user needs only understand the source

(ASCII) version of the SDF file in order to use the software.

1-3

2. THE CREATE UTILITY

The purpose of the CREATE task is to interpret and verify the system

definition file specified and create an ordered machine readable version of

the system definition file for later use by the IDE system. Optionally, the

CREATE task will create an ordered formatted listing of the system definition

file. The following sections describe in detail the format/syntax of the

system definition file, the format of the machine readable system definition

file, and the command syntax for the CREATE utility.

2.1 THE SYSTEM DEFINITION FILE

The SYSTEM DEFINITION FILE is the user created file which completely

describes the device configuration to be used and interpretation instructions

for the data received from the input devices. The device configuration may

contain any devices known to the IDE system, including a single device. The

interpretation instructions for the set of selected input devices can be

thought of as an N-dimensional lookup table, (where N is the number of input

devices) which returns a meaning for each unique set of N device inputs. If

the system definition file does not contain a meaning for a particular set of

N device inputs, the meaning is 'unknown' and the user is informed.

For each system definition, the devices prior to the ASR device are

entified as the KEY device. The significance of the KEY DEVICE is that a

separate ASR reference library (RAR) corresponding to each KEY entry.

An example of a user-created system definition file is given in Figure

2-1.

2-1

TST2.SRC
TERhiI IRCASR
BOATPlAT ,SRC
C ARB[A T,.SR
BIKEDAr.SRC

CARDAT.SRC
A TERI~iDRCYASR

C ;CAR PC ;CHEVY PCAPRICE =CAPRICE
C PC ,ifQNZA =MONZA

C C CAMiERO =CAMiERO4 P;FORD PMUSTANG =UTN
7C iP PGALAXIE GLXI

BFiATr&AT .SRC
TERMi, DRCr ASR
B iBOAT vS ;SPEEDBOAT YWELLCRAFT =WE1.LCRAFT

IS YLASTROM AGLASTRI{

B C LUHFERS =LUNERS
PC VIKTNG =VIKING3

RIKEDAT .SRC
TERMP, 1RCASR

A BICYCLEPS ;SCHWINN PROADSTAR =RBA11STAR 10 SF1'.

Figure 2-1 Example of a Three Input Device Systemi Definition File
and the Specified Include riles

(2-2

2.1.1 System Device Declaration

Line one (1) of the system definition file identifies the devices which

are to be used in the IDE system configuration. The format of line one (1) is

as follows:

line (1) DEVI, DEV2, DEV3, ...,DEVn

The identification of the devices shall be by three (3) character

alphanumeric mneumonie, the first character of which must be a letter. The

device mneumonic can include any of the following characters: A-Z, a-z, 0-9.

All characters, whether upper or lower case will oe interpreted by the

software system as upper case.

The field separator shall be a single comma (','). The 'space' and 'tab'

characters are provided to the user for formatting. Any combination of

spaces, tabs, or both may be present anywhere in the line so long as they do

not interupt the device mneumonics. All of the device mneumonies will be

located on line one (1). There are no comments allowed on line one (1).

2.1.2 Optional File Comment Field

Following line one (1), it is permissible to include a comment field

which is only for the purpose of user documentation. Any lines consecutively

following line one (1) which have a semi-colon (';') as the first character

will be considered user comments and be ignored by the system. A sample

system definition file has the following format.

2-3

*'ALE&-

line (1): DCR, ASR
line (2): ;This is the user comment area.
line (3): ;Any lines consecutively following
line (4): ;line 1 which start with a ';' are
line (5): ;comments.
line (6): II ;comment, 12 ;comment =MEANING
line (7): II ;comment, 12 =MEANING

*

line (k): II ;comment, 12 =MEANING
line (k+l): FILESPEC.EXT
line (k+2): II ;comment, 12 =MEANING

The user comment area is optional. If present, it will be sKipped over

by the IDE software.

2.1.3 Definition Lines

Any lines which follow the device specification line (line 1) and the

optional user comment area are either 'definition lines' or, file

specifications. A 'definition line' has the following form:

II ;comment, 12 ;comment, .. .In ;comment =MEANING

where II is the input from the first device on line one (1), the key device,

and 12, 13, ... In are the inputs from devices 2,3, ... n as listed on line one

(1). The input can be any character or string as detected by the particular,

device.

The field delimited by a semi-colon (';comment') is an optional in-line

comment area available to the user. There can be comments associated with

with each device input. The in-line comment is only for the user's reference

and is not used by the system. It is, however, provided to the user on the

optional listing produced by the CREATE utility.

2-4

The final field on the line, delimited by the equals (':') contains the

are specified. The 'MEANING', as with the inputs, can be any character

(string).

Any combination of spaces and tabs may be mixed between the fields

described above.

2.1.4 Include Files

In order to eliminate the re-typing of some part of a system definition

file which is to be used again, the 'Include Filet capability exists. If,

anywhere after line one (1) and the optional user comment area, there exists a

line which contains a file specification, it will be interpreted as an

'Include File'. The format and syntax of an include file is exactly that of

the system definition file. An 'Include File' can reference another 'Include

File' to a total of level of nesting equal to (4). The 'Include File' must be

the only entry on the line.

The device declaration (line 1) of the 'Include File' must match the

system definition file.

2.2 COMMAND LINE FORMAT

The CREATE utility shall use the standard RSX command line format.

CRT> [OBJECT)(LISTII/SP]=SOURCE where:

2-5

4 .-. *-. *-----*

SOURCE is system definition file input

OBJECT is the machine readable output

LIST is the optional list file-

/SP - indicates that the listing, if created, is to be spooled (Default

=-SP)

The CREATE utility shall use the NCR GCr4L routine for input. Command

line interpretation shall be via the string manipulation routines of

STRLIB.OLB.

2.3 OPTIONAL LISTING

For the system definition file shown, together with the include files,

the listing generated by the CREATE task shall be representative of the

following page, Figure 2-2.

2-6

I NTE R A E DA T A ENT NTR EY S YOSE TEI

$it# TST2oSRC

09NER: [351.13 6-JUNE-DO 10:23

DATA ENTRY DEVICES:: TERNP DRCP ASR ;KEY [rEVJ: TERMt

TERN ENTRY DRC ENTRY ASR ENTRY I'EFIN171O0f
-- - -- -- - - - - - - - - - - -

A ;BAKE - 0 ;MONTS, WARDS MONKEY =MiONKEY PIKE

S ;SCHVINH ROADSTAR =ROADSTAR 10 SPD,

D ;DOA, - C ;CRUISER OWElS =OWENS
LUHERS =LUHERS
VIKING =VIKING

S ;SPEEDBOAT UELLCRAFT =VELLCRAFT
4LASTRON 6=LASTRON

WHALER =U-HALER

C ;CAR - C ;CHEVY CAPRICE -CAPRICE "

hONZA =MONZA
+-% CAMERO --CANERO

F ;FORD MISTAN6 41USTANS
SALAXIE =GiALAXIE

P ;PONTIAC FIREPIRD =FIREDIRD

SUMBIRI =SUBIRD

4= l~t, l END OF LISTING *St**

Figure 2-2 Representative Output Listing Produced by the CREATE
Utility for a Three Input Device System Definition File

2-7

3. TRAIN UTILITY

When the ASR (Automatic Speech Recognizer) is used as one of the devices

in a data entry system, each word that the user wishes to have recognized must

be trained. The Train Utility has the responsibility of letting the user

train any word he wishes, with a minimum of difficulty. To aid the user, this

manual has been written, and wherever possible, explicit examples are used to

describe the usage of each option clearly and accurately. This section is

broken up into two parts, the first of which will explain exactly how the

software sets up the various files. Part two will describe in detail how to

run the train utility and the different switches and options involved.

3.1 TRAIN UTILITY FILE STRUCTURE

Before 'TRAIN, can be run, a SDF (System Definition File) is needed. The

'CREATE' task has oeen designed to accomplish this. A description of how to

use this' task is described in Section 2 of this manual. Also included in the

create task description is a complete description of how the SDF is set up.

Assuming an SDF exists, an undefined and unordered ASR (Automatic Speech

Recognizer) file must be created. An undefined ASR Library has the following

characteristics: 1) all undefined entries in the characteristics buffer are

zero, 2) there is no characteristics index, however two blocks are allocated

for this index in each library, 3) the message buffer is unordered, and 4)

the message index is set so that it points to each of the ASCII words in the

unordered message buffer.

When an ASR File is completely defined, it must be reordered. The

reordered ASR file will be the final version of the ASR. The characteristics

of an ordered ASR File are as follows: 1) The number of bits set in the binary

equivalent of each 32 word voice characteristic is calculated. The entries

are then reordered from lowest number of bits set to highest number of bits

3-1

set and written back to the characteristics buffer. 2) The characteristics

index is calculated and written to the two blocks allocated. 3) The software

then reorders all of the ASCII text in the message buffer in the same order

that the characteristics have been ordered in. 4) Once the message buffer

has been set up, the message index is calculated and written to the proper

location. These four steps are done separately to each library and upon

completion, the ASR file is ready to be handled by the IDE task.

The ASCII text and pointers in the ASR level of the SDF must also be

reordered in the same way that the characteristics buffer is ordered.

Together the ordered ASR file and ordered SDF allow the IDE task to make a

decision as to exactly what the user said and the associated meaning. After

each library is completed, the MFI (Master File Index) is updated. This index

points to the beginning block of each library. (See Figure 3-1 for a diagram

of the ASR library file structure).

3.1.1 The Master File Index (MFI)

As previously stated, each word in the MFI (see Figure 3-2) points to the

starting block of each library. However, the first and last word are reserved

for something else. The first word contains the number of libraries in the

ASR File. In the unordered ASR file, the last word of the MFI is the total

number of entries trained in all of the libraries. When the ASR is reordered,

the last word of the MFI is set equal to -100. In this way the software can

test the last word and know if the library has been ordered and if not, how

many words have been trained.

3.1.2 The Library Index

The Library Index (see Figure 3-3) points to an entry or group of entries

in the characteristics buffer with a given number of bits set. The position

of the odd bytes indicate how many bits are set in the entry or entries being

pointed at by the index. The formula for number of bits set is: (number of

3-2

* *, ,.,*, S ...

MASTER FILE INDEX I BLOCK

LIBRARY INDEX 1
_ _ _ _ _ _ _ 2 BLOCKS

MESSAGE INDEX

2 BLOCKS

CHARACTERISTICS (NUMBER OF ENTRIES) I 1 BLOCKS

BUFFER 8

MESSAGE BUFFER
VARIABLE LENGTH

Figure 3-1 An ASR Library File Structure

3-3

4.

ifi

1st Word

All Other Words

1 BLOCK I
Last Word

1st word of MFI: number of libraries in the ASR file

Last (256th) word of MFI is: 1) number of entries trained
if ASR file is unordered. 2)-100
is ASR file is ordered.

All other words (2nd-255th): contains the starting block

number of each library.

Figure 3-2 Master File Index (MFI) file structure

3

3-4

ODD BYTE (325) EVEN BYTE (326)

j- 120 1 5

Assume the number of the odd byte is 325

3' Assume the contents of the odd byte is -120 (decimal)

Assume the contents of the even byte is 5

4 Number of bits set being pointed at (325 + 1) / 2 = 163

Number of bytes already indexed = (-120 + 128) = 8
(128 is added to the contents of the odd byte as an offset)

Number of entries with 163 bits set = 5

Figure 3-3 Library Index File Structure

1st WORD 2nd WORD

low byte high byte

Block Number Starting Word in Block Number of Bytes

Figure 3-4 Message Index File Structure

3-5

the odd byte +1)12, therefore the library index that starts witn byte number

325 points to all entries with (325 + 1)/2 or 163 bits set. The contents of'

the odd byte is the number of entries that have already been indexed while the

contents of the even byte is the number of entries with the number of bits set

specified by the odd byte. The library index is 512 words long or 1024 bytes

long, therefore, 1023 is the highest odd byte and it points to (1023 +)/2 or

512 bits set.

3.1.3 The Message Index

The message index (see Figure 3-4) points to each separate ASCII entry in

the message buffer. Each entry in this index is 4 bytes long. The entire

index requires two blocks or 512 words. The low order word contains the block

number that the ASCII entry is in. The low order byte of the high order word

contains the word in the given block that the entry starts on and the high

order byte of the high order word contains the number of bytes that make up

the entry.

3.1.4 Summary

The description of the ASR file structure was intended to give the user a

brief summary of the structures of files that the train utility creates and

what information is contained in them. Knowledge of the file structure should

be helpful in using the Train Utility, however, it should be stressed that the

user does not have to be aware of this information. The Train Utility

properly sets up the ordered and unordered ASR files and uses the information

contained .n them without the knowledge of the user.

3.2 TRAIN UTILITY COMMAND LANGUAGE

If the Train Utility is not installed, type in RUN [205,3]TRAIN. This

will return a "TRN>" prompt. The user is now in the Train Utility. In

response to the prompt, the user has a variety of options. All of these

3-6

options will be explained in detail on the following pages. Only the first

letter of the option or, switch needs to be used.

FILSPC/CREATE (where FILSPC is the name of the SDF).

This option ceeates an unordered and undefined ASR file using the ASR

entries from the SDF. The ASR file created has the same name as its SDF

counterpart but with a .ASR extention. This command must be used only once

for each SDF.

EXAMPLE:

Directory Before Executing Command Directory Immediately After Executing
Command

EXAMPLE.SDF;1 EXAMPLE.SDF; 1

EXAMPLE.ASR;1

In the event the user used this command twice on the same SDF this is

what would happen.

Directory After Using Command Once Directory After Using Command
Twice

EXAMPLE. SDF; 1 EXAMPLE.SDF;1
EXAMPLE.ASR;1 EXAMPLE.ASR; 1

EXAMPLE.ASR;2

Assuming the SDF's are identical, both ASR files will be identical.

However, if EXAM&-i-.ASR;1 had several trained entries, EXAMPLE.ASR;2 would

still not have any trained entries. If the file were purged EXAMPLE.ASR;1

would be deleted.

3-7

FILZPC/MODIFY (where FILSPC is an ASR file).

If an ASR file already exists and the user wishes to modify the file in

some way, i.e., train some of the entries, he would use this command. This

command searches the directory for the proper ASR file and opens up the most

recent version. Modify does not create a new version, it just opens up the

version that already exists.

3

It should be noted that a file which has been reordered may not :e

modified. If the user attempts this, an error message will be echoed.

FILSPC/LIB'N' (where N is a number between 1 and 5).

This command identifies FILSPC as a library available for selective
search. This command will be discussed in more detail when some of the other

commands are discussed.

SCOPE

When 'Scope' is typed in, the current scope will be printed out. If the

scope has not been set, the entire scope will be printed. For a 1 level file

there is no scope.

EXAMPLE

Assume that the file in Figure 3-5 is being modified and the scope is

desired.

3-8

I N 7Fr, R AT ED D A TA N T RY 5Y tT IM

:Uss Sy:TST2.SRr MIS*

D'ATA ENTRY RI'VictS:: TTOPPRCrAfOR

TTO ENTRY fl&C ENTRY ASR EMMiY zDEFINITlION

A;EBIKES
;AS

;^C AMPT -

F;SCI! INN1F

: .FRRPR
;^W FLUSH4ROARSTAR =ROATISTAR 10 SP~j.

P; BOA I
r;CR~Ij'5Fp

;^r ABORT =
;^U ERROR
^W FLUISH =-

L0H,'RS = HJHERS
OWENS =OWENS
V IING =VICK~INS

;^C AORT =
i[l' ERROR =
; ' FLUVSH =

MSI.TIR1N = GLAORON
W'1.LC'1RArT =EI.L CRAFT
&JHALR =WHALER

r,- AF:
C WIlEVY

;-C APORT =-
ril FRROR = -

i^W FLUSH =-
CA~IEf = CAflERO
CAF'RICE =CAPRICE
M5NZA = ONZA

r;FnRfl

;"C AtORT =-
ni E1 RROR =-
-W FL.USH =-

GAI.AXE =GALAXTE

PMINI~r MHJ TMS(= KUSTANG

;^C ABORT
; N ERROR =
;^U FLUSH =

Fii-urt 3-5 System Definition File Source

3-9

4

TRN>TST2/M or C ; If the ASR has already been created, Lhe switoh

M is used. If not the switch C is used.

TRN>SCOPE ; Print out the current scope, Since
A-M ; the scope was not set to anything
A-S ; the entire Scope has been printed.
B-C

B-S
C-C

C-F
C-P
End of Scope

SCOPE/KEY: a, b, c...; (where a,b,c... are paths up to but not including the

ASR level).

Answering the 'TRN>' prompt with this command sets the Sccpe to the

specified ASR libraries.

EXAMPLE (See Figure 3-5 for TST2)

TRN>TST2/M or C

TRN>SCOPE
A-M

B-C
B-S

C-C
C-F
C-P
End of Scope

TRN>SCOPE/KEY: C-C ; SET the key to C-C (car-chevy)
TRN>SCOPE ; List out the current Scope
C-C
End of Scope

TRN>SCOPE/KEY: B-C, C-F
TRN>S
B-C
C-F
End of Scope
TRN>

3-10

-4-.. ---- .-

SCOPE/ALL

This command sets the Scope back to the entire SDF.

EXAMPLE (Using 'TST2' in Figure 3-5)

TRN>SCOPE Show current Scope

C-c
End of Scope
TRN>SCOPE/ALL ; SET SCOPE to everything
TRN>SCOPE
A-M
A-S
B-C
B-S
C-C
C-F
End of Scope
TRN>

SCOPE/INCLU>E: -,b,c... (Where a, b, c are paths up to
SCOPE/DELETE: ab,c.., but not including the ASR level).

The include or delete switch allows the user to include in or delete from

the current Scope, everything associated with the given path or paths.

3-11

EXAMPLE (See Figure 3-5)

TRN>SCOPE*1 A-M
A-S
B-C
B-S
C-c
C-F
c-p
End of Scope

TRN>SCOPE/DELETE: A
TRN>SCOPE
B-C
B-SI C-C
C-F

d C-p
End of Scope
TRN>SCOPE/Include: A
TRN>SCOPE
A-M
A-S
B-C
B-S
C-C
C-F

2 C-P
End of Scope
TRN>SCOPE/ DELETE: A-N
TRN>SCOPE
A-S
B-C
B-S
C-C
C-F
c-P
End of Scope
TRN>

It should be stated that anything done by the delete command can be

undone by the include command and vice versa.

3-12

LIST

When LIST is entered without a switch, it will act precisely as if the

user typed in SCOPE.

LIST/LIB'N' (where N is 1-5)

LIBIN' is an ASR file that the user declared as a library. When this

command is executed the current scope of library LIB'N' will be listed. To

declare a file a library, use the command FILSPC/LIB'N'.
* i

LIST/UNDEFINED

Since the user may not completely train a file in one sitting, there is

the likelihood that the user would forget which words have not been trained.

Using this command, the "TRAIN UTILITY' will list any undefined ASR entries

that are within the current SCOPE.

3-13

EXAMPLE (Using TST2 in Figure 3-5)
TRN > LIST/UNDEFINED
A-M

-U
-W
MONKEY

A-S

-C

-W

B-C ROADSTER

B-CC

-U
-W
L. UHERS
OWENS
VIKING

B-S
-C
-U
-W
GLASTRON
WELLC RAFT

C-c WHALER

-C
-U
-W
CAMERO
CAPR ICE
MONZA

C-F
-C
-U

-- W

GALAXI E
MUSTANG

* C-P

-U

FIREBIRD

SUNBIRD
*END OF SCOPE *
TRN>S/K:B-C,C-P--------- >NARROW THE FIELD OF SCOPE
TRN>L/U

3-14L

B-C

LUHERS
OWENS

VIIN Only undefined entries in current Scope are listed.

1U All others are ignored.
A -w

FIREBIRD
SUNBIRD

**END OF SCOPE ~
f. TRN>

LIST/KEYS

This command will ignore the current scope and echo to the user all of

the keys in the SDF.

3-15

jo l-
EXAMPLE
TRN>S/A ---------->Scope is set to entire field
TRN>L/K
A-H
A-S
B-C
B-S

C-F

C-P
- END OF SCOPE *'

TRN>S/K:A-M,C-F--->Scope field is narrowed
TRN>S
A-M
C-F

** END OF SCOPE **
TRN>L/K
A-M
A-S
B-C Ignores current scope
B-S
C-C
C-F

*0 END OF SCOPE *

TRN>

TRAIN

Entering this command will place the 'TRAIN' UTILITY' in the training

mode. This command looks at the current scope and will only allow the

undefined entries in the current scope to be trained. If the user wishes to

train words that are out of the scope, he must leave the 'TRAIN' mode and set

the Scope using the commands described previously.

3-16

A

TRAIN/KEY: KEYNAF: AkSil INrUT

There is the poa-sibi!ity that a particular word would have been trained

improperly i.e., when repeating Lhe word the user says the word incorrectly.

If in response to the TRN> prompt the user types this command the user may

retrain the wo.d.

EXAMPLE: (Using TST2 in Figure 3-5)

TRN>TRAIN/KEY: C-C: CAMERO
CAMERO

The user may now respond to the word using the responses described next.

When the user responds to the TRN> prompt with the command 'TRAIN' the

word to be trained will be echoed.

EXAMPLE: TRN>TRAIN

('word to be trained')

There are several responses that the user may input.

3-17

.4=

RESPONSES

'.' At this time the user does not wish to train this word.

<CR> the user wishes to train this word using the speech box. 'TRAIN'

will prompt with 'PLEASE REPEAT'. After repeating the word 10 times, the user

will be prompted with the next word and again he will be able to enter a

particular response.

EXAMPLE

TRN>TRAIN
WORD<CR>
PLEASE REPEAT 1

PLEASE REPEAT 10

NEXT WORD (Option)

^Z When the user wishes to terminate a training session before
everything is defined, this response will exit the training MODE.
(Training mode is automatically exited when all entries in the
current scope have been trained)

Since it would be cumbersome to have to train each word everytime it is

used, the copy option has been included. In this way words that are

frequently used, ie. the control characters, have to be trained only once.

COPY/LIB'N' (where LIB'N' is a library).

Using this command the user may use the ASR file declar'd LIB'N' to train

all of the words in the scope of the current ASR file that are also in LIB'N'.

Both the current ASR file and LIB'N' must have the same number of levels. The

ASR level of both files must also be identical.

3-18

EXAMPLE

Assume CNTRL.tSP is a completely trained ASR file containing all the

control characters. TST2.ASR is an ASR file that has not been trained. Both

files have the same number of levels with the ASR levels the same. The user

may train all the control characters in TST2.ASR using CNTRL.ASR.

TRN>TST2/M
TRN>CNTRL/L1 ; Define ASR file CNTRL, as Li.

TRN>COPY/LI ; Using LI, resolve control characters

TRN>L/U ; Only control characters are defined,

and therefore will not be included in

the list.

COPY/LIB'N': KEY

This option is used when the user wishes to use only part of LIB'N', to

train the current ASR file. Any ASR library in LIBN associated with 'KEY,

will be compared with the current scope of the ASR file being trained. When

using this option, it is not necessary for both files to have the same number

of levels or for the ASR levels to be equivalent.

3-19

EXIT

When the user wishes to exit the 'TRAIN UTILITY', this command will

simply stop the utility.

EXIT/FINISHED

If all the words have been trained, the user can create an ordered ASR

file and an ordered SDF. To do this, enter the command EXIT/FINISHED. After

creating an ordered ASR file and an ordered SDF, the 'TRAIN UTILITY' will be

exited.

At the conclusion of this command, there will be: 1) The ordered SDF, 2)

the unordered completely trained ASR file, and 3) the ordered ASR file. The

ordered ASR file will have the same filename and extension as the unordered

ASR. The version of the ordered ASR will be more recent.

3.3 ERROR MESSAGES

To assist the user in correcting any errors that might occur meaningful

error messages have been inoljded. Below is a listing of the error messages

and an explanation of what would cause them.

11 - AN ASR ENTRY WAS IDENTICAL TO ZERO

A 32 word voice characteristics entry was completely filled with zeros.

12 -OVER 127 LIB ENTRIES WITH SAME NO BITS SET

There were more than 127 voice characteristic entries which when

converted to binary were found to have the same number of bits set. This is

not to say that any of the entries were identical.

3-20

13 - TWO OR MORE ASR LIB ENTRIES ARE IDENTICAL

There were two or more voice characteristic entries which when compared

with each other were found to be identical.

14 - SYNTAX ERROR: ILLEGAL FILE/KEY WORD OPTION

An option chosen by the user does not exist, ie. LIST/ZZZ would generate

this error.

15 - SYNTAX ERROR: ABSENCE OF INPUTTED OPTION

The user failed to enter an option.

16 -SYNTAX ERROR: ABSENCE OF KEY ENTRIES

The user failed to enter any key entries when required to.

17 - I/O ERROR: UNABLE TO FIND OR OPEN FILE

The user tried to act on a file that was not in the current directory.

The file may also be locked.

18 - I/O ERROR: ASR FILE IN BAD MODE

The user attempted to modify a reordered ASR file.

19 - I/O: LIB LOCATION PREV ALLOL AS STRING LIB

The user tried to define two distinct ASR files with the same library

number.

3-21

20 - NO ASR DEVICE IN SYSTEM DEFINITION

Train is to be only used when there is an ASR device. If there is no ASR

device in the SDF, there is no reason to use the TRAIN UTILITY.

21 - NO EQUATED SDF LIBRARY

A SDF library file was requested which does not exist.

22 -ONLY 1 KEY ENTRY IS ALLOWED

Attempt to enter more than one key entry when only one is allowed.

23 - EXITING ERROR: UNRESOLVED INPUTS REMAINING

4

The command EXIT/FINISHED was issued before the current ASR file was

completely trained. The user may exit by issuing the command EXIT.

3-22

4. USER INTERFACE WITH IDE SYSTEM

The purpose of the IDE System is to provide a means of consolidating

various data entry devices into a usable package. The IDE task accepts data

input from the various devices, and uses the system definition file to find

the meaning of a given set of entries.

The user must interface the IDE task in two distinct areas. First, he

must write a FORTRAN program which calls two IDE subroutines to request that

the IDE task be run and to collect the data (i.e., the definitions). Second,

as he runs his program, he will be directly interactive with the IDE task in

terms of data entry and control.

4.1 USER CALLING PROGRAM

After creating [and training] a system definition file, the user will

enter his FORTRAN program. He will reference the IDE system through calls to

the "IDELIB.OLB" subroutine collection. The user program will be of the form

shown below.

!DATA DECLARATIONS!
!EXECUTABLE STATEMENTS!

CALL INITDE (LIBRAR, LSTDEV, ITOL, IERR)

! EXECUTABLE STATEMENTS!

CALL IDE (BUFFER, NOREQ, NOSNDS, IERR, MODE)

! EXECUTABLE STATEMENTS!

STOP
END

4-1

There are two subroutine calls to interface between the user task and the IDE

task.

4.1.1 INITDE Subroutine

The user first calls "INITDE" to request that the IDE task be run. This

routine also sends a command packet to the IDE task containing the system

definition file name, the echo device, and the correlation tolerance. Time

out on acknowledgement return from the IDE task is handled and an exit handler

for user task cleanup is set up. The calling sequence is:

CALL INITDE (LIBRAR, LSTDEV, ITOL, IERR)

where the arguments are defined as follows.

F LIBRAR (input) is declared to be a 32 BYTE array, and gives the file name

for the SDF [and ASR] file[s]. The system has a default extension for

the SDF file, ".SDF". Thus, the extension is only required to be a part

of the name supplied in LIBRAR when it is not ".SDF". [Note: This

default is consistent with the default of the CREATE task]. The ASR

library, if applicable, must have the same name as the SDF file and the

extension ".ASR". This requirement is consistent with the TRAIN utility

creation of the ASR library file.

* LSTDEV (input) is declared to be a 6 BYTE array, and gives the mneumonic

name for the listing (or echoing) device to be used for the IDE system

messages and data entry echoing capabilities. The mneuirnic name may be

any that the system has been built to recognize. The syntax for the

device name must be a two character alphabetic device name followed by a

0-, 1-, or 2-digit decimal unit number and a colon (ex. TI:, TTO:, LP:).

The user may also specify a null device (NL:) if he desires to suppress

all echoing messages, although this will hinder his error correction

options.

4-2

There is an additional restriction on the combined sizes of LIBRAR and

LSTDEV. Together these two arrays may not exceed 23 bytes, i.e., 23

alphanuneric characters. Both LIBRAR and LSTDEV should be terminated by

a null byte.

* ITOL (input) is declared to be an INTEGER *2 variable specifying the

tolerance to be used in the ASR correlation algorithm. In the case where

the SDF does not include the ASR device, the tolerance has no

21 nificance. For a system including the ASR device, if the tolerance is

3nleoted to be too small, the physical limitations of the speech

preprocessor, and the user's voice variations will prevent the

appropriate match retrieval. If the tolerance is too large, needless

time will be spent searching over entries.

o IEhR (output) is declared to be an INTEGER *2 variable providing the user

with a status return from the INITDE i utine. A positive value indicates

that the INITDE routine successfully completed. A negative value

inlicates that an error was detected during the execution of the INITDE

subroutine, reported, and immediately returned to the user task.

4.'1.? 11jE Subroutine

Before the user, begins his interaction with the IDE system in the form of

Jata eotry, he will call the IDE subroutine to set his task up to receive

lata. The calling sequence is

CALL IDE (BUFFER, NOREQ, NOSNDS, IERR, MODE)

nere , argurents are defined as follows.

* A ~ViI({cutp,':) is declared to be a 26 x NOREQ BYTE array for storing the

n - cf r ,quested definitions. The first 25 bytes of each definition

are -eturned in BUFFER.

4-3

* NOREQ (input) is declared to be an INTEGER *2 variable and gi' s the

numbe: if requested definition retrievals.

s NOSNDS (output) is declared to be an INTEGER *2 variable and returns to

the user the actual number of definitions received upon execution of an

exit condition (flush command and/or NOREQ satisfied) for the IDE

subroutine.

* IERR (output) is declared to be an INTEGER *2 variable and reports the

user status. If IERR is positive, the IDE subroutine completed

successfully. If IERR is negative, an error condition was encountered

during the execution of the IDE subroutine, was reported to the user, and

the IDE subroutine returned immediately to the calling routine.

* MODE (input) is declared to be an INTEGER *2 variable and specifies one
of two possible modes of operation. MODE = 0: The purpose of this mode

is to provide the user with immediate access to the definitions returned

from the IDE task. The normal exiting condition is the satisfaction of

the number of requested definitions. However, all of the special control

characters of the IDE task may also be used. (These control characters

will be discussed in detail in the Section titled "Operational Features

of the IDE Task").

MODE 0: For any value other than 0, the mode selected will provide the

user with completely updated (corrected) data. The error control command

is handled by this mode until that time when a flush control command is

entered. Any definitions retrieved beyond the number requested are

discarded and the user is warned, unless that retrieval is a correction

on the previous definition as indicated by an error control command. The

only means of returning to the user task is by issuing the flush command.

The user is prompted by the IDE task when the number of requested

definitions has been received and that it is an appropriate time to flush

if he is satisfied. The user may, however, use the flush command an-

4.4-4

time before the last requested definition has been received, as well, to

terminate the session prematurely.

Once the liser has received the data via the IDE subroutine, he may use

any executable FORTRAN statements to manipulate, report, or make use of the

data to serve his purposes. He may make 'repeated calls to the IDE subroutine

within his program. When the user terminates his FORTRAN program, the IDE

task will also be terminated.

The user program should be compiled and then linked with the IDE library,

IDELIB.OLB, during task building.

4.2 OPERATIONAL FEATURES OF THE IDE TASK

On,-e the user- has written his FORTRAN program and is ready to run his

tasK, he will be interacting with the IDE task.

4.2.1 Pre-Run Time Initialization of the IDE Task

4._.1.1 IDE Installation

The user should install the IDE task. If he is using the ASR device, he

has an option of two correlation algorithms. The first algorithm makes one

comparison between the spoken word and each ASR library entry within the

specified tolerance. The second algorithm makes three comparisons (one bit by

bit and two shifts) between the spoken word and each ASR library entry within

the specified tolerance. The task images are IDEALGI and IDEALG2 and the user

may make his choice at installation time. The first algorithm favors speed of

correlation while the second algorithm favors matching under slight user

speech variations.

4-5

4.2.1.2 Device Assignment

Each of the devices in the system definition file requires its own

logical unit number. The user should verify that the devices in his system

definition are physically ready (i.e., power on, etc.). The user should

assign the appropriate logical unit numbers to the devices in his system

definition by making assignments to the pseudo devices, DV1:, DV2:, DV3:, as

follows.

> ASN Device 1 mneumonic = DV1:

> ASN Device 2 mneumonic = DV2:

> ASN Device 3 mnemaonic = DV3:

The device order is dictated by the system definition.

For example, consider the system definition: TTO, TT, ASR where TTO is

the physical device TT2:, TTI is the physical device TT':, .nd ASR is the

physical device TT7:. Then, the user- would make the following assignments.

> ASN TT2:=DV1:

> ASN TTO:=DV2:

> ASN TT7:=DV3:

4.2.2 Run Time

When the user runs his task, the "CALL INITDE ()" will request that the

IDE task be run and the "CALL IDE ()" will complete the send of data to the

IDE task which is required for it to be functional. The IDE task will be in a

wait for data entry state, and when it has arrived at this point, it will

prompt the user on the echoing device with:

** READY FOR DATA ENTRY *

This prompt will be repeated each time the user task executes "CALL IDE ()".

At this point, the user may begin his data entry abiding by the following

4-6

r ules.

4.2.2.1 Data Entry

The integrated data entry system Is based on receiving the inputs from

the devices in the order specified in the system definition file. There are

three exceptions to this rule.

a. A control character may be entered from any device. (The control

characters will be discussed in the following subsection).

b. Any of the higher order devices (that is, devices before the last device

in the system definition file) may omit a device input with the default

"entry" being the entry for that particular device from the previous set.

For example, the following two sets of data entry would yield the same

results.

DV1 DV2 DV3 DV1 DV DV3

A 1 X A 1 X
(omit) 2 X A 2 X
(omit) (omit) Y A 2 Y

B (omit) Z B 2 Z

This option saves the user from redundant entries of the higher order

-devices.

c. Any of the higher order devices may be corrected by resubmitting that

entry any time prior to entering the lowest device entry. For example,

consider the following sets of data input.

4-7

CORRECTED INPUT

DVI DV2 DV3

(DVi) A, (DVi) B, (DV2) 1, (DV3) X B 1 X
(DVi) A, (DV2) 1, (DVi) B, (DV3) X 1 B 1 X
(DVI) A, (DV2) 1, (DV2) 2, (DV3) X A 2 X

The IDE system is currently built to handle spoken words from the ASR

device, and entries of size one alphanumeric character from the terminals and

the DCR device. The IDE system will allow the user to work ahead (up to 4

entries per device, not to exceed 10 in total) by continuous entry of data, as

long as the data entry is in accordance with the rules above. However, this

work ahead option may hinder error correction.

4.2.2.2 Special Control Characters

The special control characters may be entered on any device in the system

definition file, and at any time with the exception that an ASR control may

only be entered after at least one entry for the key devices has been

previously entered. (An ASR library must be initialized). There are three

special control characters and a description of their use will follow.

^C (control C) - ABORT/TERMINATE/KILL

Issuing the abort command will terminate the IDE and the user tasks, after

task cleanup. Control will return to the MCR command line.

^U (control U) - ERROR CONTROL/CORRECTION

The error control command is issued after an erroneous definition has

been sent to the user task. The interfacing subroutines handle the error

control by replacing the previous entry with the current, corrected entry.

There is no limit on the number of times an entry may be corrected by using

4-8

the error control, however, only the most recently sent definition may be

corrected. The use of ERROR CONTROL is the only means of correcting the

lowest device input, as well as the set of inputs, i.e., the definition. For

MODE=O, the ERROR CONTROL may be used on all but the last requested definition

retrieval (this restriction is imposed on MODE=O since as soon as the NOREQ

ha8 been satisfied, the IDE subroutine returns to the calling program). For

MODEO, the error control may be used on all retrievals.

^W (control W) - FLUSH/FINISH

In MODEJO, the flush command is the only method of ending the session,

returning the retrieved definitions from the IDE subroutine to the user's

calling program. In either mode, the user may choose to enter the flush

command any time prior to receiving the last requested definition. The

current number of definitions, and a count of this number will be returned to

the user'scalling program.

4.2.3 Echoing Features and Messages

As mentioned above, each calling to the IDE subroutine will cause a

prompt to be displayed indicating that the IDE task is waiting for data input:

* READY FOR DATA ENTRY *

After each entry is submitted, the mneumonic for the entry device and the

entry are echoed to the user on the LSTDEV, for the user's inspection and

approval or correction. In the case of an ASR entry, the spoken word is first

correlated against the ASR library, and if an acceptable match is found, the

meaning associated with that spoken word is what is echoed to the user. Once

an entry from the lowest device has been received, the definition associated

with the given set of inputs is found and echoed to the user and sent to the

user's task. The format of the echoing is designed for easy comparison with

the SDF listing option of the CREATE task and has the following form.

4-9

DV1 xxx
DV2 xxx

DV3 xxxDV3 xxxxxx
"XXXXXXXX

Also echoed to the user are messages related to the control characters.

^C: ** IDE TERMINATED *

^U: DVn ERR CTL **

^W: DVn * FLUSH **

During data entry sessions there are three error messages for the user

which directly relate to his data entry and are also reported on the echo

device, LSTDEV.

a. 33- NO ASR LIBRARY MATCH WITHIN TOLERANCE

The spoken word has been correlated against all possible ASR entries

within the given tolerance and no match was found. The user may repeat

the word. If this error occurs too frequently, the tolerance might be

increased, or the user might check his source system definition file to

verify the existence of this word in the ASR library.

b. 47- ASCII INPUT -- NO MATCH IN SDF ON PATH

No match in the SDF for the ascii input has been found based on the

device the entry was received on and the inputs for the devices before

this entry. The user should examine his system definition file.

c. 49- WARNING: INPUT DISCARDED // FLUSH OR ERR CTL

This message will only occur in MODE O. When the user attempts to

submit a set of entries after the last requested definition has been
received, and it has not been preceded by an error control command, this

4-10

superfluous Jeiinition is disc-arded.

In ending the data entry session, there are prompts reporting the

end to the user. For MODE 'O, when the last requested definition has been

sent, the user- receives the message:

** LAST ENTRY SENT: FLUSH IF CORRECT, ELSE ERR CTL AND RESUBMIT **

This message is repeated each time the user enters ERR CTL and resubmits

his set of data. For MODE:O, when the last requested definition has been

sent, and the IDE subroutine returns the definitions to the user's

program, the following message is echoed:

** LAST REQUESTED ENTRY SENT *

Any time the user enters the flush command, either to end a session

prematurely or to end a session of MODEJO normally, the system prompts

the user, with:

* IDE COMPLETED *

For an example of the echoing features of the IDE system, consider

one call of the IDE subroutine with MODEJO and NOREQ:3.

4-1

(-1

** READY FOR DATA ENTRY **

TTO C
DCR C

ASR MONZA
= MONZA

ASR MONZA
- MONZA

ASR ** ERR CTL **
ASR CAPRICE

= CAPRICE
TTO B

ASR OWENS

OWENS
*' LAST ENTRY SENT: FLUSH IF CORRECT, ELSE ERR CTL AND RESUBMIT *

DCR ** ERR CTL **
ASR LUHERS

-= LUHERS**0 LAST ENTRY SENT: FLUSH IF CORRECT, ELSE ERR CTL AND RESUBMIT ,

TTO ** FLUSH **

IDE COMPLETED '

The user program would have stored in BUFFER:

MONZA

CAPRICE

LUHERS

4.2.4 Error Conditions

During the operation of the IDE task, there are 17 possible error

messages the user may encounter. A description of these errors, their

possible sources and remedies is included here. The three errors discussed

above in the section on echoing are the three most common during run time.

Many of these other errors should not occur if the SDF and ASR files have been

successfully built.

17 - I/0 ERROR: UNABLE TO FIND OR OPEN FILE.

An SDF file has been requested which does not exist, or is locked. The user

should check the filename and extension.

4-12

31 - T/O ERROR: FCS CODE VIOLATION DURING READ

32 - I/O ERROR: END OF FILE REACHED DURING READ

These two errors are traps to prevent violations during reading the ASH file.

The user should verify the existence of the ASH file and that his training is

complete.

33 - NO ASH LIBRARY ENTRY MATCH WITHIN TOL

The correlation algorithm returns no acceptable match to the word spoken. The

user may repeat the word, check the tolerance, use IDEALG2, verify the

existence of this word in the SDF file, and/or check his training of this

word.

34 - INPUT ERROR: QUEUE ALREADY FULL

Each device queue allows the user to work up to 4 entries ahead, with a total

work ahead ability of 10 entries for all devices. This error indicates that

the user has exceeded these limits.

35 - OUTPUT ERROR: QUEUE ALREADY EMPTY

This error indicates that the system was requested to retrieve an entry from

the device queue, when there was no entry present.

40 - DEVICE NOT IN SYSTEM DEFINITION

An entry has been received from a device not in the system definition or the

SDF contains a device mneumonic which is not one of the five recognized: TTO,

TT1, TT2, DCR, ASR.

41 - RECEIV DIRECTIVE FAILURE

43 - SEND DIRECTIVE FAILURE

4-13

50 - ERROR FOR REC DATA AST (IN FLGREC)

These three errors trap for errors in the sending and receiving of the command

and data packets. There is a five second time out safeguard, and if this time

has been exceeded an error will be reported.

42 - REQUEST DIRECTIVE FAILURE

The request that IDE be run has failed. The user should verify that the IDE

task has been installed.

44 - ASR LIBRARY HAS UNRESOLVED INPUTS

An attempt to run the IDE task with an incomplete version of the ASR library

has been attempted. The user should first complete the TRAIN utility

session.

45 - SDF FILE DOES NOT HAVE DEVICE LIST

The first record of the SDF file is not the device record, as expected. The

user should examine his SDF file.

46 - PATH SPECIFIED DOES NOT EXIST IN SDF

A The path given by the ascii inputs is invalid for the SDF. The user should

verify that his entries are consistent with the system definition.

47 - ASCII INPUT -- NO MATCH IN SDF ON PATH

The current entry has no match in the SDF based on the ascii text and the

entries for the higher-order devices.

48 - DEVICE INITIALIZATION FAILURE

4-14

During inital izato" of the devices 1n the system definition file, an error

was aetected. 1"he user should verify that all of the devices in his system

definition are ready to be connected to the system.

49 - WARNING: INPUT DISCARDED // FLUSH OR ERR CTL

In MODE / 0, a set of inputs beyond the number requested has been entered

without specifying ERR CTL. The set of inputs is discarded, and the system

waits for a flush or error control -ommand.

4-15

